Abstract

Breast Cancer is a highly lethal reproductive cancer that disproportionately affects women and is a leading cause of death worldwide. Cancer is characterized by the uncontrolled division and invasion of abnormal cells into the surrounding tissues. Early detection is crucial in the diagnosis of Breast Cancer, as it accounts for a significant percentage of cancer diagnoses and deaths among women. To prevent unnecessary tests, accurate classification of malignant and benign tumors is necessary. Researchers have developed numerous automated classification methods for Breast Cancer, with soft computing techniques being widely used due to their high performance in classification. Machine learning algorithms, known for their ability to identify critical features from medical datasets, are also extensively utilized in Breast Cancer prediction. Therefore, this study seeks to employ Boosting algorithms in machine learning to predict Breast Cancer accurately. Over the years, the mortality rate in Breast Cancer diagnosis has decreased due to research efforts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.