Abstract
The high incidence of breast cancer in women has increased significantly in the recent years. The most familiar breast tumors types are mass and microcalcification. Mammograms-breast X-ray-are considered the most reliable method in early detection of breast cancer. Computer-aided diagnosis system can be very helpful for radiologist in detection and diagnosing abnormalities earlier and faster than traditional screening programs. Several techniques can be used to accomplish this task. In this paper, two techniques are proposed based on wavelet analysis and fuzzy-neural approaches. These techniques are mammography classifier based on globally processed image and mammography classifier based on locally processed image (region of interest). The system is classified normal from abnormal, mass for microcalcification and abnormal severity (benign or malignant). The evaluation of the system is carried out on Mammography Image Analysis Society (MIAS) dataset. The accuracy achieved is satisfied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.