Abstract

Computer-aided diagnosis systems play a crucial role in the diagnosis and early detection of breast cancer. However, most current methods focus primarily on the dual-view analysis of a single breast, thereby neglecting the potentially valuable information between bilateral mammograms. In this paper, we propose a Four-View Correlation and Contrastive Joint Learning Network (FV-Net) for the classification of bilateral mammogram images. Specifically, FV-Net focuses on extracting and matching features across the four views of bilateral mammograms while maximizing both their similarities and dissimilarities. Through the Cross-Mammogram Dual-Pathway Attention Module, feature matching between bilateral mammogram views is achieved, capturing the consistency and complementary features across mammograms and effectively reducing feature misalignment. In the reconstituted feature maps derived from bilateral mammograms, the Bilateral-Mammogram Contrastive Joint Learning module performs associative contrastive learning on positive and negative sample pairs within each local region. This aims to maximize the correlation between similar local features and enhance the differentiation between dissimilar features across the bilateral mammogram representations. Our experimental results on a test set comprising 20% of the combined Mini-DDSM and Vindr-mamo datasets, as well as on the INbreast dataset, show that our model exhibits superior performance in breast cancer classification compared to competing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.