Abstract

Breast cancer is a common cancer in female. Accurate and early detection of breast cancer can play a vital role in treatment. This paper presents and evaluates a thermogram based Computer-Aided Detection (CAD) system for the detection of breast cancer. In this CAD system, the Random Subset Feature Selection (RSFS) algorithm and hybrid of minimum Redundancy Maximum Relevance (mRMR) algorithm and Genetic Algorithm (GA) with RSFS algorithm are utilized for feature selection. In addition, the Support Vector Machine (SVM) and k-Nearest Neighbors (kNN) algorithms are utilized as classifier algorithm. The proposed CAD system is verified using MATLAB 2017 and a dataset that is composed of breast images from 78 patients. The implementation results demonstrate that using RSFS algorithm for feature selection and kNN and SVM algorithms as classifier have accuracy of 85.36% and 75%, and sensitivity of 94.11% and 79.31%, respectively. In addition, using hybrid GA and RSFS algorithm for feature selection and kNN and SVM algorithms as classifier have accuracy of 83.87% and 69.56%, and sensitivity of 96% and 81.81%, respectively, and using hybrid mRMR and RSFS algorithms for feature selection and kNN and SVM algorithms as classifier have accuracy of 77.41% and 73.07%, and sensitivity of 98% and 72.72%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.