Abstract

Deep Convolutional Neural Network (DCNN) is considered as a popular and powerful deep learning algorithm in image classification. However, there are not many DCNN applications used in medical imaging, because large dataset for medical images is not always available. In this paper, we present two DCNN architectures, a shallow DCNN and a pre-trained DCNN model: AlexNet, to detect breast cancer from 8000 mammographic images extracted from the Digital Database for Screening Mammography. In order to validate the performance of DCNN in breast cancer detection using a big data , we carried out a comparative study with a second deep learning algorithm Stacked AutoEncoders (SAE) in terms accuracy, sensitivity and specificity. The DCNN method achieved the best results with 89.23% of accuracy, 91.11% of sensitivity and 87.75% of specificity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.