Abstract
Artificial neural networks and their variants play an important role in the analysis and classification of different biomedical data. Deep learning is an advanced machine learning approach which has been used in many applications in the last few years. Worldwide breast cancer is a major disease for women; it is one of the most challenging jobs to detect at an early stage. The authors in this work have taken an attempt to classify the breast cancer data collected from the UCI machine learning repository. Malignant and benign two different types of breast cancer tumours are classified using deep neural network (DNN). Before classification two pre-processing steps are done for improving the accuracy. The correlation and one-hot encoding of the dataset was done for getting some relevant features that can be used as the input to the DNN. Around 94% of classification accuracy is achieved by using a six-layer DNN classifier. The result is also compared with some earlier works and it is found that the proposed classifier is providing better results as compared to others.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Intelligent Systems Design and Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.