Abstract

Tactics to selectively enhance cancer radioresponse are of great interest. Cancer cells actively elaborate and remodel their extracellular matrix (ECM) to aid in survival and progression. Previous work has shown that beta1-integrin inhibitory antibodies can enhance the growth-inhibitory and apoptotic responses of human breast cancer cell lines to ionizing radiation, either when cells are cultured in three-dimensional laminin-rich ECM (3D lrECM) or grown as xenografts in mice. Here, we show that a specific alpha heterodimer of beta1-integrin preferentially mediates a prosurvival signal in human breast cancer cells that can be specifically targeted for therapy. 3D lrECM culture conditions were used to compare alpha-integrin heterodimer expression in malignant and nonmalignant cell lines. Under these conditions, we found that expression of alpha5beta1-integrin was upregulated in malignant cells compared with nonmalignant breast cells. Similarly, we found that normal and oncofetal splice variants of fibronectin, the primary ECM ligand of alpha5beta1-integrin, were also strikingly upregulated in malignant cell lines compared with nonmalignant acini. Cell treatment with a peptide that disrupts the interactions of alpha5beta1-integrin with fibronectin promoted apoptosis in malignant cells and further heightened the apoptotic effects of radiation. In support of these results, an analysis of gene expression array data from breast cancer patients revealed an association of high levels of alpha5-integrin expression with decreased survival. Our findings offer preclinical validation of fibronectin and alpha5beta1-integrin as targets for breast cancer therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.