Abstract

Breast cancer is a common and deadly disease, so there is a constant need for research to find efficient targets and therapeutic approaches. Breast cancer can be classified on a molecular and histological base. Breast cancer can be divided into ER (estrogen receptor)-positive and ER-negative, HER2 (human epidermal growth factor receptor2)-positive and HER2-negative subtypes based on the presence of specific biomarkers. Targeting hormone receptors, such as the HER2, progesterone receptor (PR), and ER, is very significant and plays a vital role in the onset and progression of breast cancer. Endocrine treatments and HER2-targeted drugs are examples of targeted therapies now being used against these receptors. Emerging immune-based medicines with promising outcomes in the treatment of breast cancer include immune checkpoint inhibitors, cancer vaccines, and adoptive T-cell therapy. It is also explored how immune cells and the tumor microenvironment affect breast cancer development and treatment response. The major biochemical pathways, signaling cascades, and DNA repair mechanisms that are involved in the development and progression of breast cancer, include the PI3K/AKT/mTOR system, the MAPK pathway, and others. These pathways are intended to be inhibited by a variety of targeted drugs, which are then delivered with the goal of restoring normal cellular function. This review aims to shed light on types of breast cancer with the summarization of different therapeutic approaches which can target different pathways for tailored medicines and better patient outcomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call