Abstract
Experiments were performed on the deformation and breakup of annular liquid sheet of nine coaxial twin-fluid air-blast atomizers with water–air systems by using a high speed camera. Due to the morphological difference, the annular sheet breakup could be classified into three regimes, which were bubble (shell) breakup, Christmas tree (cellular) breakup and fiber breakup. The roles of atomizer size and Rayleigh–Taylor instability in the annular sheet breakup were studied. The correlations on the instability wavelength and the size of cellular structure were deduced. The results showed that the dimensionless cellular size was proportional to We−0.5, which were in good agreement with the experimental results. In order to have an overview of the different breakup mechanisms taking place over the wide range, we suggested categorizing these breakup regimes in a Weber number and dimensionless sheet thickness map.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Chemical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.