Abstract
Abstract The arguments justifying the revised timing of breakup between Australia and Antarctica (Cande and Mutter, 1982) and the reconstruction of Broken Ridge and Kerguelen Plateau (Mutter and Cande, 1983) are reviewed and considered with respect to new subsidence data. The age of breakup was revised from anomaly 22 time (55 My B.P.) to anomaly 34 time (85 My B.P.). The rough topography of the Diamantina Zone can be attributed to very slow spreading (−5 mm/yr.) beginning between the times of anomaly 34 and anomaly 19. The reconstruction of Broken Ridge and Kerguelen Plateau at anomaly 34 time shows overlap of these two features, but the overlap problem is nearly resolved by anomaly 18 time ( ~ 42 My B.P.). Normal seafloor spreading rates (22 mm/yr.) commenced at anomaly 19 time ( ~ 43 My B.P.). Subsidence patterns calculated from biostratigraphic data from wells drilled along Australia's southern margin are interpreted as more consistent with the revised age of Australia-Antarctic breakup. Subsidence curves systematically show rapid subsidence associated with the rift phase of margin development followed by much slower thermally-controlled subsidence during the drift phase. The timing of the rift-to-drift transition is believed to coincide with the age of breakup ( ~ 60 to 110 My B.P.). In addition, the subsidence curves indicate a west-to-east propagation of breakup along the southern margin. Magnetic anomaly patterns and stratigraphie observations are consistent with this hypothesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.