Abstract

Quantitative solid-state NMR experimental schemes that break the conventional T(1) constraint are described. The combination of broad-band homonuclear recoupling techniques and the conventional single pulse or cross-polarization (CP) schemes (referred as QUSP or QUCP) render the long T(1) of low-gamma spins no longer a constraint for obtaining quantitative NMR spectra. During the mixing time when dipolar recoupling occurs, the nonuniformly CP enhanced or recovered spin magnetization is redistributed under the reintroduced homonuclear dipole-dipole interactions so that uniformly enhanced or recovered magnetization is achieved when the system reaches the quasi-equilibrium state. It is shown that quantitative NMR spectra can be obtained for the recycle delays substantially shorter than the conventionally required 5T(1). In addition, the high efficiency gain can be achieved in QUSP and QUCP experiments with a relatively short recycle delay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.