Abstract
The spectra of black hole binaries in the low/hard state are complex, with evidence for multiple different Comptonisation regions contributing to the hard X-rays in addition to a cool disc component. We show this explicitly for some of the best RXTE data from Cyg X-1, where the spectrum strongly requires (at least) two different Comptonisation components in order to fit the continuum above 3 keV, where the disc does not contribute. However, it is difficult to constrain the shapes of these Comptonisation components uniquely using spectral data alone. Instead, we show that additional information from fast variability can break this degeneracy. Specifically, we use the observed variability power spectra in each energy channel to reconstruct the energy spectra of the variability on timescales of ~10s, 1s and 0.1s. The two longer timescale spectra have similar shapes, but the fastest component is dramatically harder, and has strong curvature indicating that its seed photons are not from the cool disc. We interpret this in the context of propagating fluctuations through a hot flow, where the outer regions are cooler and optically thick, so that they shield the inner region from the disc. The seed photons for the hot inner region are then from the cooler Comptonisation region rather than the disc itself.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.