Abstract

The Universe is not just cold dark matter and dark energy, it also contains baryons, radiation and neutrinos. The presence of these components, beyond the pressureless cold dark matter and the quasiuniform dark energy ones, imply that the single clock assumption from inflation is no longer preserved. Here we quantify this effect and show that the single-clock symmetry is ensured only on scales where baryonic effects, neutrinos effects, or sound speed are zero. These scales depend on the cosmic epoch and the Universe composition. Hence for all use and purposes of interpreting state-of-the-art and possibly forthcoming surveys, in the accessible scales, single clock symmetry cannot be said to be satisfied. Breaking the single-clock symmetry has key consequences for the study of non-Gaussian features generated by pure single-field inflation which arise from nonlinearities in the metric yielding non-Gaussianities of the local type: the ${n}_{s}\ensuremath{-}1$ and the relativistic $\ensuremath{-}5/3$ term.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.