Abstract
An accurate experimental characterization of finite antiferromagnetic (AF) spin chains is crucial for controlling and manipulating their magnetic properties and quantum states for potential applications in spintronics or quantum computation. In particular, finite AF chains are expected to show a different magnetic behaviour depending on their length and topology. Molecular AF rings are able to combine the quantum-magnetic behaviour of AF chains with a very remarkable tunability of their topological and geometrical properties. In this work we measure the 53Cr-NMR spectra of the Cr8Cd ring to study the local spin densities on the Cr sites. Cr8Cd can in fact be considered a model system of a finite AF open chain with an even number of spins. The NMR resonant frequencies are in good agreement with the theoretical local spin densities, by assuming a core polarization field AC = −12.7 T μB−1. Moreover, these NMR results confirm the theoretically predicted non-collinear spin arrangement along the Cr8Cd ring, which is typical of an even-open AF spin chain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.