Abstract

Transition metal oxides (TMOs) are recognized as high-efficiency electrocatalyst systems for restraining the shuttle effect in lithium-sulfur (Li-S) batteries, owing to their robust adsorption capabilities for polysulfides. However, the sluggish catalytic conversion of Li2S redox and severe passivation effect of TMOs exacerbate polysulfide shuttling and reducethe cyclability of Li-S batteries, which significantly hinders the development of TMOs electrocatalysts. Here, through the anion-cation doping approach, dual incorporation of phosphorus and molybdenum into MnO2(P,Mo-MnO2) was engineered, demonstrating effective mitigation of the passivation effect and allowing for the simultaneous immobilization of polysulfides and rapid redox kinetics of Li2S.Both experimental and theoretical investigations reveal the pivotal role of dopants in fine-tuning the d-band center and optimizing the electronic structure of MnO2. Furthermore, this well-designed configuration processes catalytic selectivity. Specifically, P-doping expedites rapid Li2S nucleation kinetics by minimizing reaction-free energy, while Mo-doping facilitates robust Li2S dissolution kinetics by mitigating decomposition barriers.This dual-doping approach equips P,Mo-MnO2with robust bi-directional catalytic activity, effectively overcoming passivation effect and suppressing the notorious shuttle effect. Consequently, Li-S batteries incorporating P,Mo-MnO2-based separatorsdemonstrate favorable performance thanpristine TMOs. This design offers rational viewpoint for the development of catalytic materials with superior bi-directional sulfur electrocatalytic in Li-S batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.