Abstract

We study the dynamics for the focusing nonlinear Klein–Gordon equation, [Formula: see text] with positive radial potential [Formula: see text] and initial data in the energy space. Under suitable assumption on the potential, we establish the existence and uniqueness of the ground state solution. This enables us to define a threshold size for the initial data that separates global existence and blow-up. An appropriate Gagliardo–Nirenberg inequality gives a critical exponent depending on [Formula: see text]. For subcritical exponent and subcritical energy global existence vs blow-up conditions are determined by a comparison between the nonlinear term of the energy solution and the nonlinear term of the ground state energy. For subcritical exponents and critical energy some solutions blow-up, other solutions exist for all time due to the decomposition of the energy space of the initial data into two complementary domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.