Abstract
Dictyostelium discoideum grow unicellularly, but develop as multicellular organisms. At two stages of development, their underlying symmetrical pattern of cellular organization becomes disrupted. During the formation of the multicellular aggregate, individual non-polarized cells re-organize their cytoskeletal structures to sequester specific intracellular signaling elements for activation by and directed movement within chemoattractant gradients. Subsequently, response to secreted morphogens directs undifferentiated populations to adopt different cell fates. Using a combination of cellular, biochemical and molecular approaches, workers have now begun to understand the mechanisms that permit Dictyostelium (and other chemotactic cells) to move directionally in shallow chemoattractant gradients and the transcriptional regulatory pathways that polarize cell-fate choice and initiate pattern formation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.