Abstract

The inherent dynamics of bipedal, passive mechanisms are studiedto investigate the relation between motions constrained to two-dimensional (2D)planes and those free to move in a three-dimensional (3D) environment. Inparticular, we develop numerical and analytical techniques usingdynamical-systems methodology to address the persistence and stabilitychanges of periodic, gait-like motions due to the relaxation ofconfiguration constraints and the breaking of problem symmetries. Theresults indicate the limitations of a 2D analysis to predictthe dynamics in the 3D environment. For example, it is shownhow the loss of constraints may introduce characteristically non-2Dinstability mechanisms, and how small symmetry-breaking terms may result inthe termination of solution branches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.