Abstract
A trapped-ion quantum tunneling rotor (QTR) is in a quantum superposition of two different Wigner crystal orientations. In a QTR system, quantum tunneling drives the coherent transition between the two different Wigner crystal orientations. We theoretically study the quantum dynamics of a QTR, particularly when the spin state of one of the ions is flipped. We show that the quantum dynamics of an $\it{N}$-ion QTR can be described by continuous-time cyclic quantum walks. We also investigate the quantum dynamics of the QTR in a magnetic field. Flipping the spin state breaks the rotational symmetry of the QTR, making the quantum-tunneling-induced rotation distinguishable. This symmetry breaking creates coupling between the spin state of the ions and the rotational motion of the QTR, resulting in different quantum tunneling dynamics.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.