Abstract

We explore some aspects of the relationship between biological evolution processes and the mathematical theory of records. For Eigen's quasispecies model with an uncorrelated fitness landscape, we show that the evolutionary trajectories traced out by a population initially localized at a randomly chosen point in sequence space can be described in close analogy to record dynamics, with two complications. First, the increasing number of genotypes that become available with increasing distance from the starting point implies that fitness records are more frequent than for the standard case of independent, identically distributed random variables. Second, fitness records can be bypassed, which strongly reduces the number of genotypes that take part in an evolutionary trajectory. For exponential and Gaussian fitness distributions, this number scales with sequence length N as N , and it is of order unity for distributions with a power law tail. This is in strong contrast to the number of records, which is of order N for any fitness distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.