Abstract

Microtubule is the most rigid component of eukaryotic cytoskeleton that plays pivotal roles in many important cellular events. Microtubules are known to undergo bending or buckling in cells which often results in breaking of this cytoskeletal protein filament. Various cellular events such as cell migration, chromosome segregation, etc. are dependent on the buckling induced breaking of microtubules. However, the reason behind the breaking of buckled microtubules in cell has remained obscure yet. In this work, we have demonstrated breaking of microtubules on a 2D elastic medium by applying compressive stress. The applied compressive stress caused buckling of the microtubules which ultimately resulted in their breaking. We show that breaking of the buckled microtubules cannot be accounted for by considering the changes in curvature of the microtubules due to mechanical deformation. Our results confirm that, it is the interaction of kinesin, a microtubule-associated motor protein, with microtubules which plays the key role in breaking of the buckled microtubules on the 2D elastic medium. The breaking of buckled microtubules is ascribed to decrease in rigidity of microtubules upon interaction with kinesins. This work for the first time confirms the involvement of a microtubule-associated motor protein in breaking of microtubules under compressive stress, which will help further clarify the mechanism of breaking of buckled microtubules in cells and its significance in the cellular events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call