Abstract

Significant enhancement of segment-scale chirality, as measured by vibrational circular dichroism (VCD), is observed in the helical phase (H*) of polylactide-based chiral block copolymers (BCPs*) due to the mesoscale chirality of the microphase-separated domains. Here, we report a weaker, yet meaningful, enhancement on the VCD signal of a double gyroid phase (DG) as compared to a double diamond phase (DD) and disordered phase from the same diblock BCPs*. Residual VCD enhancement indicates a weak degree of chiral symmetry breaking, implying the formation of a chiral double gyroid (DG*) instead of the canonical achiral form. Calculations on the basis of orientational self-consistent field theory, comparing coupling between the segmental-scale preference of an intradomain twist and morphological chirality, show that a transition between DG and DG* takes place above the critical chiral strength, driving a weak volume asymmetry between the two enantiomeric single networks of DG*. The formation of nanostructures with controllable mesoscale chiral asymmetry indicates a pathway for the amplification of optical activity driven by self-assembly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call