Abstract

Shallow water oscillatory flows and deep ocean steady flows have both been observed to give rise to breaking internal lee waves downstream of steep seafloor obstacles. A recent theory also predicts the existence of high‐mode oscillatory internal lee waves in deep water, but they have not previously been directly observed. Here we present repeated spatial transects of velocity, isopycnal displacement, and dissipation rate measured with towed instruments on the south flank of a supercritical ridge in Hawaii known as Kaena Ridge and compare them with predictions from a 3‐D numerical model with realistic tidal forcing, bathymetry, and stratification. The measured and modeled flow and turbulence agree well in their spatial structure, time dependence, and magnitude, confirming the existence and predicted nature of high‐mode internal lee waves. Turbulence estimated from Thorpe scales increases 2 orders of magnitude following downslope tidal flow, when the internal lee wave begins to propagate upslope and breaks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.