Abstract

Due to their large surface area and pore volume, three-dimensional covalent organic frameworks (3D COFs) have emerged as competitive porous materials. However, structural dynamic behavior, often observed in imine-linked 3D COFs, could potentially unlock their potential application in gas storage. Herein, we showed how a pre-locked linker strategy introduces breaking dynamic behavior in 3D COFs. A predesigned planar linker-based 3,8-diamino-6-phenylphenanthridine (DPP) was prepared to produce non-dynamic 3D JUC-595, as the benzylideneamine moiety in DPP locked the linker flexibility and restricted the molecular bond rotation of the imine linkages. Upon solvent inclusion and release, the PXRD profile of JUC-595 remained intake, while JUC-594 with a flexible benzidine linker experienced crystal transformation due to framework contraction-expansion. As a result, the activated JUC-595 achieved higher surface areas (754 m2 g-1) than that of JUC-594 (548 m2 g-1). Furthermore, improved CO2 and CH4 storages were also seen in JUC-595 compared with JUC-594. Impressively, JUC-595 recorded a high normalized H2 storage capacity that surpassed other reported high-surface area 3D COFs. This works shows important insights on manipulating the structural properties of 3D COF to tune gas storage performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.