Abstract
Aspect-based sentiment analysis refers to the task of determining the sentiment polarity associated with particular aspects mentioned in a sentence or document. Previous studies have used attention-based neural network models to connect aspect terms with context words, but these models often perform poorly due to limited interaction between aspect terms and opinion words. Furthermore, these models typically focus only on explicitly stated aspect objects, which can be overly restrictive in certain scenarios. Current sentiment analysis methods that rely on aspect categories also often fail to consider the implicit placement of aspect-category information within the context. While existing models may produce strong results, they often lack domain knowledge. To address these issues, this study proposes an Aspect-position and Entity-oriented Knowledge Convolutional Graph (APEKCG) consisting of two modules: the Aspect position-aware module (APA) and the Entity oriented Knowledge Dependency Convolutional Graph (EKDCG). The APA module is designed to integrate aspect-specific sentiment features for sentiment classification by incorporating information about aspect categories into different parts of the context. The EKDCG module incorporates entity-oriented knowledge, dependency labels, and syntactic path using a dependence graph. Experimental results on five benchmarks Natural Language Processing (NLP) datasets of the English language demonstrate the effectiveness of the proposed APEKCG framework. Furthermore, the APEKCG outperformed previous state-of-the-art models with its accuracy, achieving 89.13%, 84.32%, 89.02%, 79.64%, and 90.22% on the MAMS, Laptop, Restaurant, AWARE, and SemEval-15&16 datasets, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of King Saud University - Computer and Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.