Abstract

Instructional videos have become a popular tool for teaching complex topics in computer networking. However, these videos can often be lengthy and time-consuming, making it difficult for learners to obtain the key information they need. In this study, we propose an approach that leverages automatic summarization and language models to generate concise and informative summaries of instructional videos. To enhance the performance of the summarization algorithm, we also incorporate video attributes that provide contextual information about the video content. Using a dataset of computer networking tutorials, we evaluate the effectiveness of the proposed method and show that it significantly improves the quality of the video summaries generated. Our study highlights the potential of using language models in automatic summarization and suggests that incorporating video attributes can further enhance the performance of these models. These findings have important implications for the development of effective instructional videos in computer networking and can be extended to other domains as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.