Abstract

Traditionally, interocular suppression is believed to disrupt high-level (i.e., semantic or conceptual) processing of the suppressed visual input. The development of a new experimental paradigm, breaking continuous flash suppression (b-CFS), has caused a resurgence of studies demonstrating high-level processing of visual information in the absence of visual awareness. In this method the time it takes for interocularly suppressed stimuli to breach the threshold of visibility, is regarded as a measure of access to awareness. The aim of the current review is twofold. First, we provide an overview of the literature using this b-CFS method, while making a distinction between two types of studies: those in which suppression durations are compared between different stimulus classes (such as upright faces versus inverted faces), and those in which suppression durations are compared for stimuli that either match or mismatch concurrently available information (such as a colored target that either matches or mismatches a color retained in working memory). Second, we aim at dissociating high-level processing from low-level (i.e., crude visual) processing of the suppressed stimuli. For this purpose, we include a thorough review of the control conditions that are used in these experiments. Additionally, we provide recommendations for proper control conditions that we deem crucial for disentangling high-level from low-level effects. Based on this review, we argue that crude visual processing suffices for explaining differences in breakthrough times reported using b-CFS. As such, we conclude that there is as yet no reason to assume that interocularly suppressed stimuli receive full semantic analysis.

Highlights

  • INTEROCULAR COMPETITION When different images are presented to both eyes, observers tend to perceive only one of these images, whereas the other one does not give rise to a conscious percept

  • While it is conceivable that scene complexity influences the magnitude of the effect of familiarity on suppression durations, it is unexpected that scene complexity causes a reversal in the direction of the effect of familiarity on suppression durations

  • We propose that at least the following three control conditions should be included in breaking continuous flash suppression (b-continuous flash suppression (CFS)) experiments to control for these potential pitfalls

Read more

Summary

Introduction

INTEROCULAR COMPETITION When different images are presented to both eyes, observers tend to perceive only one of these images, whereas the other one does not give rise to a conscious percept (e.g., binocular rivalry, Alais and Blake, 2005; flash suppression, Wolfe, 1984; continuous flash suppression, Tsuchiya and Koch, 2005). Most cells in early visual areas (80% in V1/V2 and 60% in V4/V5) respond to stimulation of either eye irrespective of the dominant percept (Logothetis, 1998). Higher processing areas such as IT, FFA, and PPA, follow mostly ( not exclusively; Fang and He, 2005; Jiang and He, 2006; Sterzer et al, 2008) the dominant percept (Tong et al, 1998). Interocularly suppressed stimuli are expected to be processed at the level of features and coarse feature configurations, which we will refer to as the lower or visual processing level, but not at a semantic or conceptual level (Blake and Logothetis, 2002), which we will refer to as higher level

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.