Abstract

The state-selective (SS) multireference coupled-cluster (CC) method exploiting the single-reference (SR) formalism [P. Piecuch, N. Oliphant, and L. Adamowicz, J. Chem. Phys. 99, 1875 (1993)] is applied to BH and H2O at equilibrium and displaced geometries. Different selections of active spaces are considered. Comparison with the SR CC approaches involving single and double (CCSD), single, double, and triple (CCSDT) and single, double, triple, and quadruple (CCSDTQ) excitations, and with the full configuration interaction method, indicates remarkable stability and accuracy of the SS CC results for difficult bond breaking cases. For the first time, the ab initio SS CC calculations include the most complete SS CCSD(TQ) approximation, which emerges through selection of the most essential clusters appearing in the full SR CCSDTQ theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.