Abstract
New anthanthrone-based polycyclic scaffolds possessing peripheral crowded quinodimethanes have been prepared. While the compounds adopt a closed-shell butterfly-shaped structure in the ground state, a curved-to-planar fluxional inversion is accessible with a low energy barrier through a biradicaloid transition state. Inversion is primarily driven by the release of strain associated with steric hindrance at the peri position of the anthanthrone core; a low-lying diradical state is accessible through planarization of the core, which is attained in solution at moderate temperatures. The most significant aspect of this transformation is that planarization is also achieved by application of mild pressure in the solid state, wherein the diradical remains kinetically trapped. Complementary information from quantum chemistry, 1 H NMR, and Raman spectroscopies, together with magnetic experiments, is consistent with the formation of a nanographene-like structure that possesses radical centers localized at the exo-anthanthrone carbons bearing phenyl substituents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.