Abstract

Most existing or currently developing Internet of Things (IoT) communication standards are based on the assumption that the IoT services only require low data rate transmission and therefore can be supported by limited resources such as narrow-band channels. This assumption rules out those IoT services with burst traffic, critical missions, and low latency requirements. In this paper, we propose to utilize the idle devices in mission-critical IoT networks to boost the transmission data rate for critical tasks through multiple concurrent transmissions. This approach virtually expands the existing narrow-band IoT protocols to break the bandwidth limitation in order to provide low latency services for critical tasks. In this approach, we propose the task-balance method and the first-link descending order to determine the relay order and data partition in a given relay set. We theoretically prove that the optimal relay configuration that minimizes the uploading latency in single source scenario can be derived by the proposed algorithms in polynomial time when we have sufficient number of available channels. We also propose a greedy algorithm to approximate the optimal solution within a 1/2 performance lower bound in general scenarios. The simulation results shows that the proposed approach can reduce the latency of critical tasks up to 76% comparing with traditional approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call