Abstract

The design of efficient electrocatalysts is limited by scaling relationships governing trade-offs between thermodynamic and kinetic performance metrics. This ″iron law″ of electrocatalysis arises from synthetic design strategies, where structural alterations to a catalyst must balance nucleophilic versus electrophilic character. Efforts to circumvent this fundamental impasse have focused on bioinspired applications of extended coordination spheres and charged sites proximal to a catalytic center. Herein, we report evidence for breaking a molecular scaling relationship involving electrocatalysis of the oxygen reduction reaction (ORR) by leveraging ligand design. We achieve this using a binuclear catalyst (a diiron porphyrin), featuring a macrocyclic ligand with extended electronic conjugation. This ligand motif delocalizes electrons across the molecular scaffold, improving the catalyst's nucleophilic and electrophilic character. As a result, our binuclear catalyst exhibits low overpotential and high catalytic turnover frequency, breaking the traditional trade-off between these two metrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.