Abstract

AbstractEfficient semi‐transparent solar cells can extend the adoption of photovoltaics beyond standard utility‐scale, commercial, or residential applications. Halide perovskites are particularly suitable in this respect owing to their tunable bandgap. The main drawbacks in the development of transparent perovskite solar cells are the high open‐circuit voltage (Voc) deficit and the difficulties in depositing high‐quality thin films over large area substrates, given the low solubility of bromide and chloride precursors. In this work, passivation strategies are developed for the high bandgap Br perovskite able to reduce charge recombination and consequently improve the Voc. The study demonstrates 1 cm2 perovskite solar cells with Voc up to 1.73 V (1.83 eV Quasi Fermi Level Splitting) and a PCE of 8.1%. The average visible transmittance (AVT) exceeds 70% by means of a bifacial light management and a record light utilization efficiency (LUE) of 5.72 is achieved. Moreover, the potential use of the technology is evaluated toward Internet of Things (IoT) application owing to a bifaciality factor of 87% along with 17% PCE under indoor lighting. Finally, the up‐scaling is demonstrated by fabricating 20 cm2 active area modules with PCE of 7.3% and Voc per cell up to 1.65 V.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call