Abstract

A large gate metal height technique is proposed to enhance breakdown voltage in GaN channel and AlGaN channel high-electron-mobility-transistors (HEMTs). For GaN channel HEMTs with gate–drain spacing LGD = 2.5 μm, the breakdown voltage VBR increases from 518 V to 582 V by increasing gate metal height h from 0.2 μm to 0.4 μm. For GaN channel HEMTs with LGD = 7 μm, VBR increases from 953 V to 1310 V by increasing h from 0.8 μm to 1.6 μm. The breakdown voltage enhancement results from the increase of the gate sidewall capacitance and depletion region extension. For Al0.4Ga0.6N channel HEMT with LGD = 7 μm, VBR increases from 1535 V to 1763 V by increasing h from 0.8 μm to 1.6 μm, resulting in a high average breakdown electric field of 2.51 MV/cm. Simulation and analysis indicate that the high gate metal height is an effective method to enhance breakdown voltage in GaN-based HEMTs, and this method can be utilized in all the lateral semiconductor devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call