Abstract

Breakdown spectroscopy is a valuable tool for determining elements in solids, liquids, and gases. All materials in the breakdown region can be ionized and dissociated into highly excited fragments and emit characteristic fluorescence spectra. In this sense, the elemental composition of materials can be evaluated by detecting the fluorescence spectrum. This paper reviews the recent developments in laser-induced breakdown spectroscopy. The traditional laser-induced breakdown spectroscopy, filament-induced breakdown spectroscopy, plasma grating, and multidimensional plasma grating-induced breakdown spectroscopy are introduced. There are also some proposals for applications of plasma gratings, such as laser ablation, laser deposition, and laser catalysis of chemical reactions in conjunction with research on the properties of plasma gratings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call