Abstract

The breakdown point behavior of $M$-estimators in linear models with fixed designs, arising from planned experiments or qualitative factors, is characterized. Particularly, this behavior at fixed designs is quite different from that at designs which can be corrupted by outliers, the situation prevailing in the literature. For fixed designs, the breakdown points of robust $M$-estimators (those with bounded derivative of the score function), depend on the design and the variation exponent (index) of the score function. This general result implies that the highest breakdown point within all regression equivariant estimators can be attained also by certain $M$-estimators: those with slowly varying score function, like the Cauchy or slash maximum likelihood estimator. The $M$-estimators with variation exponent greater than 0, like the $L_1$ or Huber estimator, exhibit a consider-ably worse breakdown point behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.