Abstract
Spatial confinement of electronic excitations in semiconductor nanocrystals (NCs) results in a significant enhancement of nonradiative Auger recombination (AR), such that AR processes can easily dominate the decay of multiexcitons. AR is especially detrimental to lasing applications of NCs, as optical gain in these structures explicitly relies on emission from multiexciton states. In standard NCs, AR rates scale linearly with inverse NC volume. Here, we investigate multiexciton dynamics in hetero-NCs composed of CdSe cores and CdS shells of tunable thickness. We observe a dramatic decrease in the AR rates at the initial stage of shell growth, which cannot be explained by traditional volume scaling alone. Rather, fluorescence-line-narrowing studies indicate that the suppression of AR correlates with the formation of an alloy layer at the core-shell interface suggesting that this effect derives primarily from the "smoothing" of the confinement potential associated with interfacial alloying. These data highlight the importance of NC interfacial structure in the AR process and provide general guidelines for the development of new nanostructures with suppressed AR for future lasing applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.