Abstract

Sensorineural hearing loss is a common sequela of acute and chronic otitis media, and the round window membrane (RWM) is currently being considered as a major route for noxious agents to pass from the middle ear cavity to the cochlea. Streptococcus pneumoniae, a major causative agent of otitis media, and Streptococcus pyogenes A produce molecularly related toxins, pneumolysin and streptolysin O (SLO), that form large pores in target membranes. In this study, we analyzed the effects of SLO on the permeability of the RWM. Resected RWMs from a total of 104 guinea pigs were embedded between two chambers of an in vitro system. One chamber was designated as the tympanal (cis) compartment, and the other was designated as the inner ear (trans) compartment. The permeability of normal and SLO-damaged RWMs towards Na+, [14C]mannitol, and proteins was investigated. SLO evoked permeability defects dose dependently in the RWM with fluxes of both Na+ and [14C]mannitol being demonstrable over a time span of up to 8 h. Serum proteins and radioiodinated SLO were also shown to pass through the damage RWM. Scanning electron microscopy revealed the morphological correlates to these results. We propose that damage to the RWM by potent pore-forming cytolysins leads to leakage of ions from the perilymph. Ionic disequilibrium and passage of noxious macromolecules to the cochlea could contribute to disturbances of the inner ear function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.