Abstract

The limits of validity of the linear photoelastic model are investigated in a one-dimensional dual photonic-phononic cavity, formed by alternating layers of a chalcogenide glass and a polymer homogeneous and isotropic material, which supports both optical and acoustic resonant modes localized in the same region. It is shown that the linear-response regime breaks down when either the acoustic excitation increases or the first-order acousto-optic interaction coupling element vanishes by symmetry, giving rise to the manifestation of multiphonon absorption and emission processes by a photon. Our results provide a consistent interpretation of different aspects of the underlying physics relating to nonlinear acousto-optic interactions that can occur in such cavities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.