Abstract

Conducting polymers have become standard engineering materials used in many electronic devices. Despite this, there is a lack of understanding of the microscopic origin of the conducting properties, especially at realistic device field strengths. We present simulations of doped poly(p-phenylene) (PPP) using a Su–Schrieffer–Heeger (SSH) tight-binding model, with the electric field included in the Hamiltonian through a time-dependent vector potential via Peierls substitution of the phase factor. We find that polarons typically break down within less than a picosecond after the field has been switched on, already for electric fields as low as around 1.6 mV/Å. This is a field strength common in many flexible organic electronic devices. Our results challenge the relevance of the polaron as charge carrier in conducting polymers for a wide range of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.