Abstract

We revisit the derivation of Rabi- and Dicke-type models, which are commonly used for the study of quantum light-matter interactions in cavity and circuit QED. We demonstrate that the validity of the two-level approximation, which is an essential step in this derivation, depends explicitly on the choice of gauge once the system enters the ultrastrong coupling regime. In particular, while in the electric dipole gauge the two-level approximation can be performed as long as the Rabi frequency remains much smaller than the energies of all higher-lying levels, it can dramatically fail in the Coulomb gauge, even for systems with an extremely anharmonic spectrum. We extensively investigate this phenomenon both in the single-dipole (Rabi) and multi-dipole (Dicke) case, and considering the specific examples of dipoles confined by double-well and by square-well potentials, and of circuit QED systems with flux qubits coupled to an LC resonator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.