Abstract

Topological insulators hold promises to realize exotic quantum phenomena in electronic, photonic, and phononic systems. Conventionally, topological indices, such as winding numbers, have been used to predict the number of topologically protected domain-wall states (TPDWSs) in topological insulators, a signature of the topological phenomenon called bulk-edge correspondence. Here, we demonstrate theoretically and experimentally that the number of TPDWSs in a mechanical Su-Schrieffer-Heeger (SSH) model can be higher than the winding number depending on the strengths of beyond-nearest-neighbor interactions, revealing the breakdown of the winding number prediction. Alternatively, we resort to the Berry connection to accurately characterize the number and spatial features of TPDWSs in SSH systems, further confirmed by the Jackiw-Rebbi theory proving that the multiple TPDWSs correspond to the bulk Dirac cones. Our findings deepen the understanding of complex network dynamics and offer a generalized paradigm for precise TPDWS prediction in potential applications involving localized vibrations, such as drug delivery and quantum computing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call