Abstract
Abstract Let $S$ and $\tilde S$ be two independent and identically distributed random variables, which we interpret as the signal, and let $P_{1}$ and $P_{2}$ be two communication channels. We can choose between two measurement scenarios: either we observe $S$ through $P_{1}$ and $P_{2}$, and also $\tilde S$ through $P_{1}$ and $P_{2}$; or we observe $S$ twice through $P_{1}$, and $\tilde{S}$ twice through $P_{2}$. In which of these two scenarios do we obtain the most information on the signal $(S, \tilde S)$? While the first scenario always yields more information when $P_{1}$ and $P_{2}$ are additive Gaussian channels, we give examples showing that this property does not extend to arbitrary channels. As a consequence of this result, we show that the continuous-time mutual information arising in the setting of community detection on sparse stochastic block models is not concave, even in the limit of large system size. This stands in contrast to the case of models with diverging average degree, and brings additional challenges to the analysis of the asymptotic behavior of this quantity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.