Abstract

In this paper, the off-state breakdown characteristics of two different AlGaN/GaN high electron mobility transistors (HEMTs), featuring a 50-nm and a 150-nm GaN thick channel layer, respectively, are compared. The HEMT with a thick channel exhibits a little larger pinch-off drain current but significantly enhanced off-state breakdown voltage (BVoff). Device simulation indicates that thickening the channel increases the drain-induced barrier lowering (DIBL) but reduces the lateral electric field in the channel and buffer underneath the gate. The increase of BVoff in the thick channel device is due to the reduction of the electric field. These results demonstrate that it is necessary to select an appropriate channel thickness to balance DIBL and BVoff in AlGaN/GaN HEMTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.