Abstract
Abstract The breakdown point is considered an important measure of the robustness of a linear regression estimator. This article addresses the concept of breakdown in nonlinear regression. Because it is not invariant to nonlinear reparameterization, the usual definition of the breakdown point in linear regression is inadequate for nonlinear regression. The original definition of breakdown due to Hampel is more suitable for nonlinear problems but may indicate breakdown when the fitted values change very little. We introduce breakdown functions, which measure breakdown of the fitted values. Using the breakdown functions, we introduce a new definition of the breakdown point. For the linear regression model, our definition of the breakdown point coincides with the usual definition for linear regression as well as with Hampel's definition. For most nonlinear regression functions, we show that the breakdown point of the least squares estimator is 1/n. We prove that for a large class of unbounded regression func...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.