Abstract

Since the discovery of high-temperature superconductor (HTS), liquid nitrogen(LN <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> ) has not been only utilized as a coolant of superconducting electric equipment but also as an insulation material in cryogenic environment due to its dielectric performance. It also has a lot of advantages over other cryogenic liquid such as less expense and harmless substance, thus it has been widely used in the development of superconducting devices. Up to now, a lot of research works dealing with the breakdown characteristics of LN <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> for distribution-class superconducting devices have been presented worldwide but, few research works about breakdown characteristics of liquid nitrogen in extra high voltage class have been reported due to the limitation of cryogenic test facilities in extra high voltage (EHV) class. In order to study the cryogenic EHV insulation technologies, we have built the cryogenic dielectric test facilities including a fiber reinforced plastic (FRP) big cryostat with cryogenic bushing, a 400 kV AC overvoltage and a 1.6 MV lightning impulse test systems. Using these facilities, we focused on the breakdown characteristics of liquid nitrogen in EHV level which is rather different comparing to the distribution level. With real scale big cryostat, AC overvoltage test and impulse tests have been performed. From the test results, the breakdown characteristics of liquid nitrogen in EHV were suggested. And these test results could be used as basic insulation design data to develop transmission-class superconducting electric equipment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call