Abstract

Hydrogel based triboelectric nanogenerators (H-TENGs) are deemed as one of most promising flexible energy harvesting and self-powered systems due to its multifunctionality, but the poor mechanical properties of hydrogel electrode bring a major risk of shortening the service life of H-TENGs in case of huge physical impact. Herein, a durable conductive hydrogel electrode with breakage-resistant capacity is developed utilizing the Hofmeister effect on starch polymers through solvent-exchange strategy. Owing to bundled starch chains within hydrogel, the breakage-resistant hydrogel electrode possesses excellent mechanical reliability, including outstanding modulus, fracture energy, anti-puncture capacity and long-term stability. Furthermore, the reliable hydrogel electrode endows triboelectric nanogenerator with good electrical output performances and superb damage immunity, prolonging its service life under accidental physical impact. More significantly, this fabricated triboelectric nanogenerator shows great potential in high-impact application. This investigation offers a versatile and effective way to design next generation hydrogel-based triboelectric nanogenerator with superior damage immunity and long-service life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call