Abstract

Nanoparticles of metal oxides have applications as additives in thin nanocomposite films. For optical applications that include transparent films and coatings, nanoparticles should be uniformly dispersed in the polymer film. Most commercially available nanoparticles are large agglomerates about 1 μm in maximum dimensions composed of primary particles with sizes ranging from 5 to 50 nm. The large agglomerates scatter light and are not directly suitable for optical systems. Ultrasonication of liquid suspensions was used to prepare stable dispersions from commercial titania nanopowders. The mean diameter of sonicated titania nanopowders was correlated inversely to the specific energy. After a rapid initial size reduction, continued ultrasonication lead to insignificant reduction and even reagglomeration of the particles. Both erosion and fracture mechanisms were observed. None of the commercial nanopowders were successfully broken to their primary particle sizes. Reagglomeration of the dispersion could be prevented by electrostatic stabilization with nitric acid or ammonium hydroxide when its zeta potential value was less than − 30 mV or greater than + 30 mV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.