Abstract

ABSTRACTThe vibroseis method has become the principal data acquisition method in land seismic exploration. It seems that this method has been extended to its limits as the search for energy resources continues. Many practical issues arising from field operations have remained theoretically unexplained, for example, variations in wavelet arrival time, inaccurate wavelet estimation and harmonics in the wavelet itself. The focus of this paper is the proposal of a new model, which is referred to as the vibrator‐coupled ground model, to simulate the filtering effects of a complex coupling system consisting of the coupling between the baseplate and the ground as well as the coupling between the captured ground mass near the vibrator baseplate and the surrounding earth. With this vibrator‐coupled ground model many of the practical issues mentioned above were reasonably addressed. Furthermore, it was demonstrated from experimental tests that both the pilot sweep and the weighted‐sum groundforce, when filtered by the vibrator‐coupled ground model, are proportional to the far‐field particle velocity whereas the unfiltered signals are not. The harmonics on the filtered weighted‐sum groundforce successfully maintain a proportional relationship with the harmonics seen in the far‐field signal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.