Abstract

Abstract Given the growing presence of additive manufacturing (AM) processes in engineering design and manufacturing, there has emerged an increased interest in introducing AM and design for AM (DfAM) educational interventions in engineering education. Several researchers have proposed AM and DfAM educational interventions; however, some argue that these efforts might not be sufficient to develop higher-level skills among engineers (e.g., identifying design opportunities that leverage AM capabilities). Prior work has shown that longer, distributed educational interventions are more effective in encouraging learning and information retention; however, these interventions could also be time-consuming and expensive to implement. Therefore, there is a need to test the effectiveness of longer, distributed DfAM educational interventions compared to shorter, lecture-style interventions. Our aim in this research is to explore this research gap through an experimental study. Specifically, we compared two variations of a DfAM educational intervention: (1) a module-style intervention spread over two sessions with the introduction of DfAM evaluation metrics, and (2) a lecture-style intervention completed in a single session with no evaluation metrics introduced. From our results, we see that students who received the module-style intervention reported a greater increase in their DfAM self-efficacy. Additionally, students who received the module-style intervention reported having given a greater emphasis on part consolidation and feature size. Finally, we observe that the structure of the educational intervention did not influence the creativity of ideas generated by the participants. These findings highlight the utility of module-style DfAM educational interventions towards increasing DfAM self-efficacy, but not necessarily design creativity. Moreover, these findings highlight the need to formulate educational interventions that are effective and efficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.