Abstract

BackgroundIncreasing evidence suggests an unexpected potential for non-neutralizing antibodies to prevent HIV infection. Consequently, identification of functional linear B-cell epitopes for HIV are important for developing preventative and therapeutic strategies. We therefore explored the role of antigen-specific immune responses in controlling plasma viremia in SIV infected rhesus macaques.MethodsThirteen rhesus macaques were inoculated either intravaginally or intrarectally with SIVMAC251. Peripheral blood CD4+ T-cells were quantified. Plasma was examined for viremia, antigen specific IgG, IgA and IgM binding responses and neutralizing antibodies. Regions containing binding epitopes for antigen-specific IgG, IgM and IgA responses were determined, and the minimum size of linear Envelope epitope responsible for binding antibodies was identified.ResultsThe presence of neutralizing antibodies did not correlate the outcome of the disease. In a few SIV-infected macaques, antigen-specific IgG and IgM responses in plasma correlated with decreased plasma viremia. Early induction and the breadth of antigen-specific IgG responses were found to be significantly correlated with the control of plasma viral load. Immunoglobulin classes share similar functional linear B-cell epitopes. SIV-specific linear envelope B-cell epitopes were found to be 12 amino-acids in length.ConclusionsEarly induction of combination of peptide-specific IgG responses were found to be responsible for the control of plasma viral load and indicative of disease outcome in SIV-infected rhesus macaques and might be important for the development of therapeutic strategies for control or prevention of HIV/AIDS.Electronic supplementary materialThe online version of this article (doi:10.1186/s12985-016-0652-x) contains supplementary material, which is available to authorized users.

Highlights

  • Increasing evidence suggests an unexpected potential for non-neutralizing antibodies to prevent HIV infection

  • The present study was designed to determine the importance of total immunoglobulin, antigen-specific immunoglobulin responses against whole viral lysate (WVL), peptides corresponding to Env, Gag, Nef, and Tat and neutralizing antibodies (NAbs) in controlling plasma viral load in SIVMAC251 infected rhesus macaques (RMs)

  • Our findings suggest that conformational IgG and IgM responses as well as breadth of different peptide-specific functional IgG responses are indicative of disease outcome

Read more

Summary

Introduction

Increasing evidence suggests an unexpected potential for non-neutralizing antibodies to prevent HIV infection. We explored the role of antigen-specific immune responses in controlling plasma viremia in SIV infected rhesus macaques. The continuous maturation of the immune response following SIV infection emphasizes the need to study the generation of SIV-specific Ab responses, antigen-antibody binding efficacy, and their potential importance in regulating disease progression. The present study was designed to determine the importance of total immunoglobulin, antigen-specific immunoglobulin responses against whole viral lysate (WVL), peptides corresponding to Env, Gag, Nef, and Tat and neutralizing antibodies (NAbs) in controlling plasma viral load (pVL) in SIVMAC251 infected rhesus macaques (RMs). Regions containing binding epitopes for antigen-specific IgG, IgM and IgA responses during different stages of SIV infection were determined, and the minimum size of linear Env epitope responsible for binding Abs was identified. The presence of NAbs against neutralization-sensitive and resistant pseudovirus did not predict the outcome of the disease

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call